Respuesta :
Answer:
(a)
[tex]S = \{GGG, GGB, GBG, GBB, BBG, BGB, BGG, BBB\}[/tex]
(b)
i.
[tex]1\ girl = \{GBB, BBG, BGB\}[/tex]
[tex]P(1\ girl) = 0.375[/tex]
ii.
[tex]Atleast\ 2 \ girls = \{GGG, GGB, GBG, BGG\}[/tex]
[tex]P(Atleast\ 2 \ girls) = 0.5[/tex]
iii.
[tex]No\ girl = \{BBB\}[/tex]
[tex]P(No\ girl) = 0.125[/tex]
Step-by-step explanation:
Given
[tex]Children = 3[/tex]
[tex]B = Boys[/tex]
[tex]G = Girls[/tex]
Solving (a): List all possible elements using set-roster notation.
The possible elements are:
[tex]S = \{GGG, GGB, GBG, GBB, BBG, BGB, BGG, BBB\}[/tex]
And the number of elements are:
[tex]n(S) = 8[/tex]
Solving (bi) Exactly 1 girl
From the list of possible elements, we have:
[tex]1\ girl = \{GBB, BBG, BGB\}[/tex]
And the number of the list is;
[tex]n(1\ girl) = 3[/tex]
The probability is calculated as;
[tex]P(1\ girl) = \frac{n(1\ girl)}{n(S)}[/tex]
[tex]P(1\ girl) = \frac{3}{8}[/tex]
[tex]P(1\ girl) = 0.375[/tex]
Solving (bi) At least 2 are girls
From the list of possible elements, we have:
[tex]Atleast\ 2 \ girls = \{GGG, GGB, GBG, BGG\}[/tex]
And the number of the list is;
[tex]n(Atleast\ 2 \ girls) = 4[/tex]
The probability is calculated as;
[tex]P(Atleast\ 2 \ girls) = \frac{n(Atleast\ 2 \ girls)}{n(S)}[/tex]
[tex]P(Atleast\ 2 \ girls) = \frac{4}{8}[/tex]
[tex]P(Atleast\ 2 \ girls) = 0.5[/tex]
Solving (biii) No girl
From the list of possible elements, we have:
[tex]No\ girl = \{BBB\}[/tex]
And the number of the list is;
[tex]n(No\ girl) = 1[/tex]
The probability is calculated as;
[tex]P(No\ girl) = \frac{n(No\ girl)}{n(S)}[/tex]
[tex]P(No\ girl) = \frac{1}{8}[/tex]
[tex]P(No\ girl) = 0.125[/tex]