Respuesta :
Answer: [tex]0.708\ mA[/tex]
Explanation:
Given
[tex]E_o=20\ V/m[/tex]
[tex]\omega =10^7\ s^{-1}[/tex]
Cross-sectional area [tex]A=0.40\ m^2[/tex]
Current density is given by
[tex]J=\epsilon_o \dfrac{dE}{dt}[/tex]
Displacement current
[tex]\Rightarrow I=JA\\\Rightarrow I=8.854\times 10^{-12}\times 20\times 10^7\times 0.4\\\Rightarrow I=0.708\times 10^{-3}\ A[/tex]
The required value of the maximum displacement current of the given space is [tex]7.08 \times 10^{-4} \;\rm A[/tex].
Given data:
The intensity of electric field is, [tex]E_{0}=20 \;\rm V/m[/tex].
The angular frequency of electric field is, [tex]\omega=1.0 \times 10^{7} \;\rm s^{-1}[/tex].
The cross-sectional area of space is, [tex]A =0.40 \;\rm m^{2}[/tex].
In the given problem, the instantaneous electric field is given by [tex]E = E_{0} \times cos(\omega t)[/tex]
So, the expression for the current density is,
[tex]J= \epsilon_{0} \times \dfrac{dE}{dt}[/tex]
Here, [tex]\epsilon_{0}[/tex] is the permittivity of free space. Solving as,
[tex]J= \epsilon_{0} \times \dfrac{d(E_{0} \times cos(\omega t))}{dt}\\\\J= -\epsilon_{0} \times E_{0} \times \omega \times sin(\omega t)[/tex]
And the expression for the maximum displacement current is,
[tex]I = J \times A[/tex]
And the maximum displacement current is possible only when, J is positive and J will be positive for [tex]sin(\omega t)=-1[/tex].
Then solving as,
[tex]I = (-\epsilon_{0} \times E_{0} \times \omega \times sin(\omega t)) \times A\\\\I = (-8.85 \times 10^{-12} \times 20 \times (1.0 \times 10^{7}) \times (-1)) \times 0.40\\\\I = 7.08 \times 10^{-4} \;\rm A[/tex]
Thus, we can conclude that the required value of the maximum displacement current of the given space is [tex]7.08 \times 10^{-4} \;\rm A[/tex].
Learn more about the displacement current here:
https://brainly.com/question/20344850