Solution :
Let
Waiting time for accessing one record = W
Read time for moving the information = R
Total time for accessing to get one block of information = X
So, the random variable X is defined as :
X = W + R
= W + 7
a). Calculating E(X)
E(X) = E(W+7)
= E(W) + 7
[tex]$=\int_{0}^{28}\frac{1}{28-0}w dw +7$[/tex]
[tex]$=\frac{1}{28}\int_{0}^{28}w dw +7$[/tex]
[tex]$=\frac{1}{28}\left[\frac{w^2}{2}\right]_0^{28}+7$[/tex]
[tex]$=\frac{1}{56}\left[28^2\right]+7$[/tex]
[tex]$=\frac{28}{2}+7$[/tex]
= 14 + 7
= 21
b). Calculating Var(X)
V(X) = V(W+7)
= V(W)+0
= V(W)
= [tex]$E(W^2)-[E(W)]^2$[/tex]
[tex]$=\int_0^{28}\frac{1}{28}w^2 dw-[14]^2$[/tex]
[tex]$=\frac{1}{28}\left[\frac{w^3}{3}\right]_0^{28}-196$[/tex]
[tex]$=\frac{1}{28\times 3}\times 28^3-196$[/tex]
[tex]$=\frac{28\times 28}{3}-196$[/tex]
= 65.33
c). Considering A is the random variable that can be defined as follows:
A = 6(W+7)
=6W + 42
So calculating E(A)
E(A) = E(6W + 42)
= E(6W) +42
= 6E(W) + 42
= 6(14) + 42
= 84 + 42
= 126