Answer:
The correct answer is option (A) that is KEA > KEB .
Explanation:
Let us calculate -
If the object is straighten up and inclined plane , the work done is
[tex]W=F_d- F_f_r_id-F_gh[/tex]
[tex]W=F_d-\mu_kmgdcos\theta-mgdsin\theta[/tex]
The change in kinetic energy is ,
[tex]\Delta K=\frac{1}{2}mv^2-\frac{1}{2}m\nu_0^2[/tex]
At the top of the inclined plane , the velocity is zero
So,
[tex]\Delta K=\frac{1}{2} m(0)^2-\frac{1}{2}m\nu_0^2[/tex]
[tex]\Delta KE=-\frac{1}{2}m\nu_0^2[/tex]
From the work energy theorem , we have [tex]W=-\Delta K[/tex] in case of friction , so
[tex]\frac{1}{2}m\nu_0^2=Fd-\mu_kmgdcos\theta-mgdsin\theta[/tex]
[tex]KE=Fd-\mu_kmgdcos\theta-mgdsin\theta[/tex]
For object A-
[tex]KE_A=Fd-\mu_kmgdcos\theta-mgdsin\theta[/tex]
For object B
[tex]KE_B= Fd -2\mu_kMgdcos\theta-2Mgdsin\theta[/tex]
[tex]KE_B= Fd -2(\mu_kMgdcos\theta-Mgdsin\theta)[/tex]
Thus , larger mass is going to mean less total work and a lower kinetic energy .
From the above results , we get
[tex]KE_A >KE_B[/tex]
Therefore , option A is correct .