Answer:
[tex]\triangle x=1.135 *10^9km[/tex]
Explanation:
From the question we are told that:
Diameter of array[tex]d=6000km \approx 6000*10^3[/tex]
Infrared wavelength [tex]\lambda =10m[/tex]
Distance of planet [tex]d=59 light\ years \approx 55.82*10^{16}m[/tex]
Generally the equation for Diffraction is mathematically given by
[tex]sin\theta =1.22\frac{\lambda}{D}[/tex]
Given that
[tex]sin\theta=\frac{\triangle x}{R}[/tex]
Therefore
[tex]\frac{\triangle x}{R}=1.22\frac{\lambda}{D}[/tex]
[tex]\triangle x=1.22\frac{R \lambda}{D}[/tex]
[tex]\triangle x=1.22\frac{10 *55.82*10^{16}}{6000*10^3}[/tex]
[tex]\triangle x=1.135 *!0^1^2m[/tex]
[tex]\triangle x=1.135 *10^9km[/tex]