Answer: [tex](0,0), (3,-27)[/tex]
Step-by-step explanation:
Given
Curve is [tex]y=x^4-4x^3[/tex]
The stationary point on a differentiable function is the points where the differentiation of the function is zero i.e. slope is zero at that point.
Differentiate the curve [tex]f(x)=x^4-4x^3[/tex]
[tex]\Rightarrow f'(x)=4x^3-12x^2[/tex]
Equate it to zero
[tex]\Rightarrow 4x^3-12x^2=0\\\Rightarrow 4x^2(x-3)=0\\\Rightarrow x=0,0,3[/tex]
Put [tex]x=0,3[/tex] in the function [tex]f(x)=x^4-4x^3[/tex]
[tex]\Rightarrow f(0)=0\\\Rightarrow f(3)=3^4-4(3)^3\\\Rightarrow f(3)=81-108\\\Rightarrow f(3)=-27[/tex]
Therefore, the stationary points are [tex](0,0), (3,-27)[/tex]