Respuesta :

Your awnser is going to be in a fraction form. Im on my laptop so there is no symbol for square root but your answer is going to be 
 The square root of 6+ the square root of 2 (Thats the top half of the fraction) over 4 (bottom half of the fraction)

Answer : The exact value of [tex]\cos 15^o[/tex] is, [tex]\frac{\sqrt{3}+1}{2\sqrt{2}}[/tex]

Step-by-step explanation :

As we are given that: [tex]\cos 15^o[/tex]

Now we have to calculate the exact value of [tex]\cos 15^o[/tex].

We can write [tex]\cos 15^o[/tex] as,

[tex]\cos 15^o=\cos (45^o-30^o)[/tex]

Using identity :

[tex]\cos (A-B)=(\cos A\times \cos B)+(\sin A\times \sin B)[/tex]

[tex]\cos (45^o-30^o)=(\cos 45^o\times \cos 30^o)+(\sin 45^o\times \sin 30^o)[/tex]

As, we know that:

[tex]\sin 45^o=\frac{1}{\sqrt{2}}\\\\\cos 45^o=\frac{1}{\sqrt{2}}\\\\\sin 30^o=\frac{1}{2}\\\\\cos 30^o=\frac{\sqrt{3}}{2}[/tex]

Now put all the given values in the above expression, we get:

[tex]\cos (45^o-30^o)=(\frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2})+(\frac{1}{\sqrt{2}}\times \frac{1}{2})[/tex]

[tex]\cos (45^o-30^o)=(\frac{\sqrt{3}}{2\sqrt{2}})+(\frac{1}{2\sqrt{2}})[/tex]

[tex]\cos (45^o-30^o)=\frac{\sqrt{3}+1}{2\sqrt{2}}[/tex]

So,

[tex]\cos 15^o=\frac{\sqrt{3}+1}{2\sqrt{2}}[/tex]

Thus, the exact value of [tex]\cos 15^o[/tex] is, [tex]\frac{\sqrt{3}+1}{2\sqrt{2}}[/tex]

ACCESS MORE