What is atomic radius?
- a.) The atomic radius is one-half the distance between the nuclei of two atoms (just like a radius is half the diameter of a circle). However, this idea is complicated by the fact that not all atoms are normally bound together in the same way. Some are bound by covalent bonds in molecules, some are attracted to each other in ionic crystals, and others are held in metallic crystals.
i.) Atomic size gradually decreases from left to right across a period of elements. This is because, within a period or family of elements, all electrons are added to the same shell. However, at the same time, protons are being added to the nucleus, making it more positively charged. The effect of increasing proton number is greater than that of the increasing electron number; therefore, there is a greater nuclear attraction. This means that the nucleus attracts the electrons more strongly, pulling the atom's shell closer to the nucleus. The valence electrons are held closer towards the nucleus of the atom. As a result, the atomic radius decreases.
ii.) Down a group, atomic radius increases. The valence electrons occupy higher levels due to the increasing quantum number (n). As a result, the valence electrons are further away from the nucleus as ‘n’ increases. Electron shielding prevents these outer electrons from being attracted to the nucleus; thus, they are loosely held, and the resulting atomic radius is large.
What is ionization energy?
-b.) Ionization energy is the energy required to remove an electron from a neutral atom in its gaseous phase.
i.) The lower this energy is, the more readily the atom becomes a cation. Therefore, the higher this energy is, the more unlikely it is the atom becomes a cation. Generally, elements on the right side of the periodic table have a higher ionization energy because their valence shell is nearly filled. Elements on the left side of the periodic table have low ionization energies because of their willingness to lose electrons and become cations. Thus, ionization energy increases from left to right on the periodic table.
ii.) The ionization energy of the elements within a group generally decreases from top to bottom. This is due to electron shielding.[ Electron shielding - It describes the ability of an atom's inner electrons to shield its positively-charged nucleus from its valence electrons. When moving to the right of a period, the number of electrons increases and the strength of shielding increases]