Respuesta :

11. Factoring and solving equations - A. Factor- 1. Factor 3x2 + 6x if possible. Look for monomial (single-term) factors first; 3 is a factor of both 3x2 and 6x and so is x . Factor them out to get 3x2 + 6x = 3(x2 + 2x1 = 3x(x+ 2) . 2. Factor x2 + x - 6 if possible. Here we have no common monomial factors. To get the x2 term we'll have the form (x +-)(x +-) . Since (x+A)(x+B) = x2 + (A+B)x + AB , we need two numbers A and B whose sum is 1 and whose product is -6 . Integer possibilities that will give a product of -6 are -6 and 1, 6 and -1, -3 and 2, 3 and -2. The only pair whose sum is 1 is (3 and -2) , so the factorization is x2 + x - 6 = (x+3)(x-2) . 3. Factor 4x2 - 3x - 10 if possible. Because of the 4x2 term the factored form wli be either (4x+A)(x +B) or (2x+A)(2x+B) . Because of the -10 the integer possibilities for the pair A, B are 10 and -1 , -10 and 1 , 5 and -2 . -5 and 2 , plus each of these in reversed order. Check the various possibilities by trial and error. It may help to write out the expansions (4x + A)(x+ B) = 4x2 + (4B+A)x + A8 1 trying to get -3 here (2x+A)(2x+B) = 4x2 + (2B+ 2A)x + AB Trial and error gives the factorization 4x2 - 3x - 10 - (4x+5)(x- 2) . 4. Difference of two squares. Since (A + B)(A - B) = - B~ , any expression of the form A' - B' can be factored. Note that A and B might be anything at all. Examples: 9x2 - 16 = (3x1' - 4' = (3x +4)(3x - 4) x2 - 29 = x2 - (my)* = (x+ JTy)(x- my) 
ACCESS MORE