prove the above question and i will give you....

Answer:
see explanation
Step-by-step explanation:
Using the identity
cos²A - sin²B = cos(A + B) . cos(A - B)
Here A = [tex]\frac{\pi }{8}[/tex] + [tex]\frac{A}{2}[/tex] , B = [tex]\frac{\pi }{8}[/tex] - [tex]\frac{A}{2}[/tex]
Consider the left side
cos²([tex]\frac{\pi }{8}[/tex] + [tex]\frac{A}{2}[/tex] ) - sin²( [tex]\frac{\pi }{8}[/tex] - [tex]\frac{A}{2}[/tex] )
= cos([tex]\frac{\pi }{8}[/tex] + [tex]\frac{A}{2}[/tex] + [tex]\frac{\pi }{8}[/tex] - [tex]\frac{A}{2}[/tex] ) × cos([tex]\frac{\pi }{8}[/tex] + [tex]\frac{A}{2}[/tex] - [tex]\frac{\pi }{8}[/tex] + [tex]\frac{A}{2}[/tex] )
= cos ([tex]\frac{\pi }{4}[/tex] ) × cos ( A)
= [tex]\frac{1}{\sqrt{2} }[/tex] cosA
= right side , thus proven