What is 2logs(5x°)+ logs(+6) written as a
single logarithm?

Given:
The expression is:
[tex]2\log_5(5x^3)+\dfrac{1}{3}\log_5(x^2+6)[/tex]
To find:
The single logarithm expression for the given expression.
Solution:
We have,
[tex]2\log_5(5x^3)+\dfrac{1}{3}\log_5(x^2+6)[/tex]
Using properties of the logarithm, we get
[tex]=\log_5(5x^3)^2+\log_5(x^2+6)^{\frac{1}{3}}[/tex] [tex][\because \log x^n=n\log x][/tex]
[tex]=\log_5(25x^6)+\log_5\sqrt[3]{x^2+6}[/tex]
[tex]=\log_5(25x^6)\sqrt[3]{x^2+6}[/tex] [tex][\because \log a+\log b=\log (ab)][/tex]
Therefore, the correct option is B.