Respuesta :

Given:

The equation of a circle is:

[tex](x-3)^2+y^2=32[/tex]

To find:

Center and the circumference of the circle.

Solution:

The standard form of a circle is:

[tex](x-h)^2+(y-k)^2=r^2[/tex]         ...(i)

Where, (h,k) is center and r is the radius.

We have,

[tex](x-3)^2+y^2=32[/tex]           ...(ii)

On comparing (i) and (ii), we get

[tex]h=3,y=0,r=\sqrt{32}[/tex]

So, the center of the circle is (3,0) and the radius of the circle is [tex]\sqrt{32}[/tex].

Now, the circumference of the circle is:

[tex]C=2\pi r[/tex]

[tex]C=2(3.14)(\sqrt{32})[/tex]

[tex]C=35.525045[/tex]

[tex]C\approx 35.5[/tex]

Therefore, the circumference of the circle is about 35.5 units.

ACCESS MORE