Answer:
0.174 plasma
[tex]$5.85 \times 10^{-4}$[/tex] flame
Explanation:
Given :
Energy :
[tex]$\Delta E=3.371 \times 10^{-19} $[/tex] J per atom
[tex]$g^*=2$[/tex] (degenraci of excited state)
g = 1 (degenraci of excited state)
Boltzmann Distribution
[tex]$\frac{N^*}{N}=\frac{g^*}{g}e^{-\frac{\Delta E}{kT}}$[/tex]
where,
[tex]$N^*$[/tex] = atoms in excited state
N = atoms in lower energy level
k = [tex]$1.38 \times 10^{-23}$[/tex] J/K
Therefore,
Relative population in plasma
T = 10,000 K
[tex]$\frac{N^*}{N}=\frac{g^*}{g}e^{-\frac{\Delta E}{kT}}$[/tex]
[tex]$\frac{N^*}{N}=\frac{2}{1}e^{-\frac{-3.37\times 10^{-19}}{1.38 \times 10^{-23} \times 10000}}$[/tex]
[tex]$\frac{N^*}{N}=2 \times e^{-2.44275}$[/tex]
[tex]$\frac{N^*}{N}=2 \times 0.8692$[/tex]
[tex]$\frac{N^*}{N}=0.1738$[/tex]
Relative population in flame
T = 3000
[tex]$\frac{N^*}{N}=\frac{g^*}{g}e^{-\frac{\Delta E}{kT}}$[/tex]
[tex]$\frac{N^*}{N}=\frac{2}{1}e^{-\frac{-3.371\times 10^{-19}}{1.38 \times 10^{-23} \times 3000}}$[/tex]
[tex]$\frac{N^*}{N}=2 \times e^{-8.1425}$[/tex]
[tex]$\frac{N^*}{N}=2 \times 2.9090 \times 10^{-4}$[/tex]
[tex]$\frac{N^*}{N}=5.85 \times 10^{-4}$[/tex]