Country A has an exponential growth rate of 4.6​% per year. The population is currently 5,849​,000, and the land area of Country A is 38​,000,000,000 square yards. Assuming this growth rate continues and is​ exponential, after how long will there be one person for every square yard of​ land?

Respuesta :

There will be one person per square yard when the number of people is equal to the number of square yards of the country.
In other words, we need to know when the population of the country will be 27,000,000,000.
We know that the population grows exponentially, so we use the exponential growth formula:

Where:
P is the population as a function of time
is the initial population
r is the annual growth rate
t is time in year.
The information we have allows us to conclude that:


So the exponential growth equation is:

We want to know when P = 27, 000,000,000.
So:

Now we solve for t, and as soon as we answer for t, the answer will be 189.66 years. Hope this helps! Mark brainly please!


Answer:

195.205998 years

Step-by-step explanation:

P=P0(1.046)^t   P=future population   P0=initial population  t=years passed

38,000,000,000 = 5,849,000(1.046)^t

1.046^t = 38,000,000,000/5,849,000

1.046^t = 38,000,000/5,849

plug in log on both sides

log 1.046^t = log (38,000,000/5,849)

t[log 1.046] = log (38,000,000/5,849)

t = In (38,000,000/5,849)/ In 1.046

t ≈ 195.205998 (hope this helps)

ACCESS MORE