Respuesta :
Answer:
Step-by-step explanation:
From the information given:
X represent no of Canon SLR
The pmf is given as:
X 0 1 2 3 4
p(x) 0.1 0.2 0.3 0.25 0.15
p = P(customers that purchase the camera & also purchase an extended waranty.
As a result, the conditional distribution Y provided X approaches a Binomial distribution with n = x and p = 0.55 as the parameter.
[tex]\dfrac{Y}{X}\sim Bin (n = x, p=0.55) y =0.1, ... x \ and \ X = 0,1,2,3,4[/tex]
The condition probabilities Y given X is:
[tex]P (\dfrac{Y=0}{X=0}) = 1 \\ \\ P(\dfrac{Y=0}{X=1} ) = 0.45 and P(\dfrac{Y=1}{X=1}) = 0.55 \\ \\ P(\dfrac{Y=0}{X=2}) = 0.2025 , P(\dfrac{Y=1}{X=2}) = 0.495, P(\dfrac{Y=2}{X=2}) = 0.3025 \\ \\ P(\dfrac{Y=0}{X=3}) =0.091125 , P(\dfrac{Y=1}{X=3} ) =0.334125 , P(\dfrac{Y=2}{X=3}) = 0.408375; \ \ \& \ \ P(\dfrac{Y=3}{X=3}) = 0.166375 \\ \\[/tex]
[tex]P(\dfrac{Y=0}{X=4}) =0.041006 \ , \ P(\dfrac{Y=1}{X=4} ) =0.200475 , \ P(\dfrac{Y=2}{X=3} ) =0.367538 , \\ \\ P(\dfrac{Y=3}{X=4} ) =0.299475 , \ P(\dfrac{Y=4}{X=4} ) =0091506 ,[/tex]
Now, the joint P.D (probability Dist.) of X & Y is expressed as:
[tex]P(\dfrac{Y=y}{X=x} ) = P\dfrac{Y=y\ , \ X=x }{X=x} \\ \\ P(X=x,Y=y) = P(\dfrac{Y=y}{X=x} ) \times P(X=x)[/tex]
The Joint P.D is;
Y Total
0 1 2 3 4
X 0 0.1 0 0 0 0 0.1
1 0.09 0.11 0 0 0 0.2
2 0.06075 0.1485 0.09075 0 0 0.3
3 0.022781 0.083531 0.102094 0.041594 0 0.25
4 0.006151 0.030071 0.055131 0.044921 0.013726 0.15
Total 0.279682 0.372103 0.247974 0.086515 0.013726 1
(a)
P(X=4,Y=2)
From the table above:
P(X=4,Y=2) = 0.055131
(b)
[tex]P(X=Y ) \implies P (X=0,Y=0) + P (X=1,Y=1) +P (X=2,Y=2) +P (X=3,Y=3) +P (X=4,Y=4) \\ \\ = 0.1 +0.11 + 0.09075 + 0.041594 + 0.013726 \\ \\ \mathbf{= 0.35607}[/tex]