Respuesta :

Given:

The value is [tex]\dfrac{\sqrt{2}}{2}[/tex].

To find:

The values from the given options which are equal to the given value.

Solution:

We have,

[tex]\dfrac{\sqrt{2}}{2}[/tex]

It can be written as:

[tex]\dfrac{\sqrt{2}}{2}=\dfrac{1}{\sqrt{2}}[/tex]

From the standard trigonometric table, we get

[tex]\sin 30^\circ=\dfrac{1}{2}[/tex]

[tex]\sin 45^\circ=\dfrac{1}{\sqrt{2}}[/tex]

[tex]\cos 45^\circ=\dfrac{1}{\sqrt{2}}[/tex]

[tex]\cos 60^\circ=\dfrac{1}{2}[/tex]

[tex]\tan 30^\circ=\dfrac{1}{\sqrt{3}}[/tex]

[tex]\tan 45^\circ=1[/tex]

From the above values it is clear that the value of [tex]\sin 45^\circ [/tex] and [tex]\cos 45^\circ [/tex] are equal to [tex]\dfrac{1}{\sqrt{2}}[/tex].

Therefore, [tex]\sin 45^\circ [/tex] and [tex]\cos 45^\circ [/tex] and equal to [tex]\dfrac{\sqrt{2}}{2}[/tex]. So, options B and C are correct.

ACCESS MORE