BAC ~ DEC
x = ___ units

Given:
[tex]\Delta BAC\sim \Delta DEC[/tex]
To find:
The value of x.
Solution:
We have,
[tex]\Delta BAC\sim \Delta DEC[/tex]
The corresponding parts of similar triangles are proportional.
[tex]\dfrac{AB}{ED}=\dfrac{AC}{EC}[/tex]
On substituting the values, we get
[tex]\dfrac{24}{56}=\dfrac{2x}{3x+5}[/tex]
[tex]\dfrac{3}{7}=\dfrac{2x}{3x+5}[/tex]
[tex]3(3x+5)=2x(7)[/tex]
[tex]9x+15=14x[/tex]
Subtract [tex]9x[/tex] from both sides.
[tex]15=14x-9x[/tex]
[tex]15=5x[/tex]
[tex]\dfrac{15}{5}=x[/tex]
[tex]3=x[/tex]
Therefore, the value of x is 3 units.