Given:
The vertices of a rectangle are (6, 3), (−6, 3), (−6, −1), and (6, −1).
To find:
The perimeter of the rectangle.
Solution:
Distance formula:
[tex]d=\sqrt{(x_2-x_1)^2-(y_2-y_1)^2}[/tex]
Let the vertices of a rectangle are A(6, 3), B(−6, 3), C(−6, −1), and D(6, −1).
Using the distance formula, we get
[tex]AB=\sqrt{(-6-6)^2-(3-3)^2}[/tex]
[tex]AB=\sqrt{(-12)^2-(0)^2}[/tex]
[tex]AB=\sqrt{144}[/tex]
[tex]AB=12[/tex]
Similarly,
[tex]BC=\sqrt{\left(-6-\left(-6\right)\right)^2+\left(-1-3\right)^2}=4[/tex]
[tex]CD=\sqrt{\left(6-\left(-6\right)\right)^2+\left(-1-\left(-1\right)\right)^2}=12[/tex]
[tex]AD\sqrt{\left(6-6\right)^2+\left(-1-3\right)^2}=4[/tex]
Now, the perimeter of the rectangle is:
[tex]Perimeter=AB+BC+CD+AD[/tex]
[tex]Perimeter=12+4+12+4[/tex]
[tex]Perimeter=32[/tex]
Therefore, the perimeter of the rectangle is 32 units.