Respuesta :
Answer:
[tex]\mathbf{\alpha = 25.88 \ rad/s^2 }[/tex]
Explanation:
Consider the force due to friction:
[tex]F = \mu_kN -------- (1)[/tex]
where;
N = normal reaction
[tex]\mu_k[/tex] = coefficient of kinetic friction.
Via the horizontal direction, the forces of equilibrium are:
[tex]\sum F_x = \sum(F_x) _{eff} \\ \\ N- F_{AB} \ cos \theta = 0 \\ \\ F_{AB} \ cos \theta = N ------ (2)[/tex]
where;
[tex]\theta[/tex] = angle of AB is associated with the horizontal;
[tex]F_{AB}[/tex] = force exerted by AB
Let's take a look at the equilibrium of forces along the vertical direction.
[tex]\sum F_y = \sum (F_y)_{eff} \\ \\ F+F_{AB} sin \theta - W = 0\\ \\ \mu_k N + F_{AB} sin \theta -mg =0 \\ \\ F_{AB} sin \theta = mg - \mu_kN-------(3)[/tex]
By dividing (3) by (2), we get:
[tex]\dfrac{F_{AB} sin \theta }{F_{AB} cos \theta} = \dfrac{mg - \mu_k N}{N} \\ \\ tan \theta = \dfrac{mg-\mu_kN}{N} \\ \\ Ntan \theta = mg - \mu_kN \\ \\ N(tan \theta + \mu_k ) = mg \\ \\ N = \dfrac{mg}{tan \theta + \mu_k}[/tex]
By replacing the obtained value of N into:
[tex]F = \mu_k N[/tex]
we have:
[tex]F = \mu_k (\dfrac{mg}{tan \theta + \mu_k}) \\ \\ \\ F = \dfrac{mg \mu_k}{tan \theta + \mu_k}[/tex]
Moment about center A can be expressed as:
[tex]\sum M_A = \sum (M_A) _{eff} \\ \\ Fr = I \alpha\\ \\ \alpha = \dfrac{Fr}{I}[/tex]
where;
[tex]\alpha[/tex] = angular acceleration of the disc
I = mass moment of inertia
r = radius of disc
By replacing F and I; ∝ becomes:
[tex]\alpha = \dfrac{\bigg( \dfrac{mg \mu_k}{tan \theta + \mu_k} \bigg) r}{\dfrac{1}{2}mr^2}[/tex]
[tex]\alpha = \dfrac{2g}{r} \dfrac{\mu_k}{tan \ \theta + \mu_k}------- (4)[/tex]
where;
g = 9.8 m/s²
r = 0.18 m
[tex]\mu_k = 0.54[/tex]
θ = 60°
[tex]\alpha = \dfrac{2(9.8)}{0.18} (\dfrac{0.54}{tan \ 60+ 0.54})[/tex]
[tex]\mathbf{\alpha = 25.88 \ rad/s^2 }[/tex]