Respuesta :
we want to know when we brought it back in to the room. at that time
the temperature difference is 80 - 42 = 38 so we have to solve
38=9e^−.3344t for t
this time we get
38 / 9=e^−.3344t
t=ln(38 / 9) / −.3344 t=−4.3
so 4.3 minutes before 2:10
38=9e^−.3344t for t
this time we get
38 / 9=e^−.3344t
t=ln(38 / 9) / −.3344 t=−4.3
so 4.3 minutes before 2:10
Answer:
[tex]t_1 = 2.8 min[/tex]
Step-by-step explanation:
we know that
[tex]T = T_s + (T_o -T_s)e^{-kt}[/tex]
From information given
At 2:00 PM
[tex]T = 20 + (80 -20) e^{-kt}[/tex]
[tex]T = 20 + 60e^{-kt}[/tex]
At 2:03 PM
[tex]42 = 20 = 60e^{-k3}[/tex]
[tex]e^{-k} = [\frac{11}{30}]^{1/3}[/tex]
hence
[tex]T = 20 + 60 [\frac{11}{30}]^{t/3}[/tex]
[tex]t_1 min[/tex] after 2:03. Thermometer reads
[tex]T = 20 + 60[\frac{11}{30}]^{t_1/3}[/tex]
when instrument brought back to rom
[tex]T = 80 + (T_o- 80)[\frac{11}{30}]^{t/3}[/tex]
[tex]T = 80 + (20+ 60[\frac{11}{30}]^{t_1/3}- 80)[\frac{11}{30}]^{t/3}[/tex]
[tex]T = 80+60[[\frac{11}{30}]^{t_1/3} -1] \frac{11}{30}^{t/3}[/tex]
AT 2.10 pm [tex]t = 7 - t_1[/tex]
[tex]71 = 80+ 60[[\frac{11}{30}]^{t_1/3} -1] \frac{11}{30}^{(7- t_1) /3}[/tex]
solving for t_1 we get
[tex]t_1 = 2.8 min[/tex]
