Respuesta :

Answer:

[tex]\overline {AD}[/tex] = 5

Step-by-step explanation:

From the given diagram we are required to find the length of [tex]\overline {AD}[/tex]

The given parameters are;

ΔABC and ΔCDA are congruent

The length of [tex]\overline {BC}[/tex] = 5

The length of [tex]\overline {AC}[/tex] = 7

The length of [tex]\overline {CD}[/tex] = 4

From ΔABC ≅ ΔCDA, we have;

[tex]\overline {AC}[/tex] = [tex]\overline {AC}[/tex]  By reflexive property

∴ [tex]\overline {BC}[/tex] = 5 is either equal to [tex]\overline {AD}[/tex] or [tex]\overline {CD}[/tex]

However, [tex]\overline {CD}[/tex] = 4, therefore, [tex]\overline {BC}[/tex] ≠ [tex]\overline {CD}[/tex]

We can then have;

[tex]\overline {BC}[/tex] = [tex]\overline {AD}[/tex] = 5.