Respuesta :

Answer:

- 5/13

Step-by-step explanation:

tans = 5/12 = height/base

Using Pythagoras, hypotenuse = √12² + 5² = 13

Therefore coss had to be 12/13

But since cos s < 0, cos s = - 12/13

Thus,

tanA = sinA/cosA

tanA cosA = sinA

(5/12)(- 12/13) = sinA

- 5/13 = sinA

Answer:

sin s = - [tex]\frac{5}{13}[/tex]

Step-by-step explanation:

Given

tan s = [tex]\frac{5}{12}[/tex] = [tex]\frac{opposite}{adjacent}[/tex]

Then this is a 5- 12- 13 right triangle with hypotenuse = 13

Since tan s > 0 and cos s < 0

Then s is in the third quadrant where sin s < 0

sin s = [tex]\frac{opposite}{hypotenuse}[/tex] = - [tex]\frac{5}{13}[/tex]