Respuesta :
Answer:
- 5/13
Step-by-step explanation:
tans = 5/12 = height/base
Using Pythagoras, hypotenuse = √12² + 5² = 13
Therefore coss had to be 12/13
But since cos s < 0, cos s = - 12/13
Thus,
tanA = sinA/cosA
tanA cosA = sinA
(5/12)(- 12/13) = sinA
- 5/13 = sinA
Answer:
sin s = - [tex]\frac{5}{13}[/tex]
Step-by-step explanation:
Given
tan s = [tex]\frac{5}{12}[/tex] = [tex]\frac{opposite}{adjacent}[/tex]
Then this is a 5- 12- 13 right triangle with hypotenuse = 13
Since tan s > 0 and cos s < 0
Then s is in the third quadrant where sin s < 0
sin s = [tex]\frac{opposite}{hypotenuse}[/tex] = - [tex]\frac{5}{13}[/tex]