Respuesta :

Note: The third term of the sequence should be [tex]\dfrac{27}{2}[/tex] instead of [tex]\dfrac{37}{2}[/tex], otherwise the sequence has no common ratio.

Given:

The given sequence is

[tex]24,18,\dfrac{27}{2},\dfrac{81}{8}[/tex]

To find:

The common ratio of the given sequence.

Solution:

The quotient of each pair of consecutive terms are:

[tex]\dfrac{18}{24}=\dfrac{3}{4}[/tex]

Similarly,

[tex]\dfrac{\dfrac{27}{2}}{18}=\dfrac{27}{36}[/tex]

[tex]\dfrac{\dfrac{27}{2}}{18}=\dfrac{3}{4}[/tex]

And,

[tex]\dfrac{\dfrac{81}{8}}{\dfrac{27}{2}}=\dfrac{81}{8}\times \dfrac{2}{27}[/tex]

[tex]\dfrac{\dfrac{81}{8}}{\dfrac{27}{2}}=\dfrac{3}{4}[/tex]

Therefore, the common ratio of the given sequence is [tex]\dfrac{3}{4}[/tex] or 0.75.