()) A rectangular piece of paper has a perimeter of 22 inches and an area of 28 square
inches. What are the dimensions of the paper?

Respuesta :

Given:

Perimeter of a rectangular paper = 22 inches.

Area of the rectangular paper = 28 square inches.

To find:

The dimensions of the rectangular paper.

Solution:

Let l be the length and w be the width of the rectangular paper.

Perimeter of a rectangle is:

[tex]P=2(l+w)[/tex]

Perimeter of a rectangular paper is 22 inches.

[tex]2(l+w)=22[/tex]

[tex]l+w=\dfrac{22}{2}[/tex]

[tex]l=11-w[/tex]                      ...(i)

Area of a rectangle is:

[tex]A=lw[/tex]

Area of the rectangular paper is 28 square inches.

[tex]28=lw[/tex]

Using (i), we get

[tex]28=(11-w)w[/tex]

[tex]28=11w-w^2[/tex]

[tex]w^2-11w+28=0[/tex]

Splitting the middle term, we get

[tex]w^2-7w-4w+28=0[/tex]

[tex]w(w-7)-4(w-7)=0[/tex]

[tex](w-7)(w-4)=0[/tex]

Using zero product property, we get

[tex](w-7)=0\text{ and }(w-4)=0[/tex]

[tex]w=7\text{ and }w=4[/tex]

If [tex]w=7[/tex], then by using (i)

[tex]l=11-7[/tex]

[tex]l=4[/tex]

If [tex]w=4[/tex], then by using (i)

[tex]l=11-4[/tex]

[tex]l=7[/tex]

Therefore, the dimensions of the paper are either [tex]7\times 4[/tex] or [tex]4\times 7[/tex].