Respuesta :

Answer:

The perimeter is 24 units

Step-by-step explanation:

Given

[tex]A = (-9,2)[/tex] --- [tex](x_1,y_1)[/tex]

[tex]B = (-9,-6)[/tex] --- [tex](x_2,y_2)[/tex]

[tex]C = (-3,-6)[/tex] --- [tex](x_3,y_3)[/tex]

Required

Determine the perimeter

To do this, we calculate the distance AB, BC and AC.

Distance is calculated as:

[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2[/tex]

So, we have:

[tex]AB = \sqrt{(-9 - -9)^2 + (2 - -6)^2[/tex]

[tex]AB = \sqrt{64[/tex]

[tex]AB = 8[/tex]

[tex]BC = \sqrt{(-9 - -3)^2 + (-6 - -6)^2[/tex]

[tex]BC = \sqrt{36[/tex]

[tex]BC = 6[/tex]

[tex]AC = \sqrt{(-9 --3)^2 + (2 --6)^2[/tex]

[tex]AC = \sqrt{100[/tex]

[tex]AC = 10[/tex]

So, the perimeter (P) is:

[tex]P = AB + BC + AC[/tex]

[tex]P =8 + 6 + 10[/tex]

[tex]P =24[/tex]