Answer:
v = 0.1068 m / s
Explanation:
To find the speed of the satellite we use Newton's second law where the force is the universal law of gravitation
F = ma
F = [tex]G \frac{m M}{r^2}[/tex]
acceleration is centripetal
a = v² / r
we substitute
[tex]G \frac{m M}{r^2} = m \frac{v^2}{r}[/tex]
v² = [tex]G \frac{M}{r}[/tex]
The radius of the orbit is given we will assume that this radius is half from the center of the earth
we substitute
v² = 6.67 10⁻¹¹ 5.98 10²⁴/6758998
v = [tex]\sqrt{59.013 \ 10^6}[/tex]
v = 7.68 10³ m / s
The centripetal acceleration is
a = v² / r
a = 7.68 10³/6758998
a = 1.14 10⁻³ m / s²
For the airplane we use the definition of centripetal acceleration
a = v² / r
v = [tex]\sqrt{a \ r }[/tex]
let's calculate
v = [tex]\sqrt{1.14 \ 10^{-3} \ 10}[/tex]
v = 0.1068 m / s