Respuesta :
Answer:
Explanation:
Given the data in the question;
L = 46 in
Ga = 5 × 10³ ksi
Gs = 11 × 10³ ksi
Outside diameter da = 5 in
ds = 4 in
Tb = 3 kip.in
Now,
Ja = polar moment of Inertia of Aluminum;
Ja ⇒ π/32( 5⁴ - 4⁴ ) = π/32( 625 - 256 ) = π/32( 369 ) [tex]in^u[/tex]
Js = polar moment of inertia of steel
Js ⇒ π/32 ds⁴ = π/32( 4⁴ ) = π/32( 256 )
Ta is torque transmitted by Aluminum
Ts is torque transmitted by steel
{composite member }
T = Ta + Ts ------ let this be equation m1
Now, we use the relation;
T/J = G∅/L
JG∅ = TL
∅ = TL/GJ
so, for aluminum rod ∅[tex]_{alu[/tex] = TaLa/GaJa
for steel rod ∅[tex]_{steel[/tex] = TsLs/GsJs
but we know that, ∅a = ∅s = ∅[tex]_B[/tex]
so
[TaLa/GaJa] = [TsLs/GsJs]
also, we know that, La = Ls = L
∴ [Ta/GaJa] = [Ts/GsJs]
we solve for Ta
TaGsJs = TsGaJa
Ta = TsGaJa / GsJs
we substitute
Ta = [Ts(5 × 10³)( π/32( 369) )] / [ (11 × 10³)( π/32( 256 ) ) ]
Ta = 0.66Ts
now, we substitute 0.66Ts for Ta and 3 for T in equation 1
T = Ta + Ts
3 = 0.66Ts + Ts
3 = 1.66Ts
Ts = 3 / 1.66
Ts = 1.8072 ≈ 1.81 kip-in
so
∅[tex]_{steel[/tex] = TsLs / GsJs
we substitute
∅[tex]_{steel[/tex] = (1.81 × 46 ) / ( 11 × 10³ × π/32( 256 ) )
∅[tex]_{steel[/tex] = 83.26 / 276460.1535
∅[tex]_{steel[/tex] = 0.000301
∅[tex]_{steel[/tex] = 3.01 × 10⁻⁴ rad
so
∅[tex]_{steel[/tex] = ∅[tex]_B[/tex] = 3.01 × 10⁻⁴ rad
Therefore, the magnitude of the angle of twist at end B is 3.01 × 10⁻⁴ rad