Respuesta :
Answer:
The electric field will be decreased by 29%
Explanation:
The distance between point P from the distance z = 2.0 R
Inner radius = R/2
Outer raidus = R
Thus;
The electrical field due to disk is:
[tex]\hat {K_a} = \dfrac{\sigma}{2 \varepsilon _o} \Big( 1 - \dfrac{z}{\sqrt{z^2+R_i^2}} \Big)[/tex])
[tex]\implies \dfrac{\sigma}{2 \vaepsilon _o} \Big ( 1 - \dfrac{2.0 \ R}{\sqrt{ (2.0\ R)^2+(R)^2}} \Big)[/tex]
Similarly;
[tex]\hat {K_b} = \hat {k_a} - \dfrac{\sigma}{2 \varepsilon_o} \Big( 1 - \dfrac{2.0 \ R}{\sqrt{(2.0 \ r)^2 + (\dfrac{R}{2}^2)}}\Big)[/tex]
However; the relative difference is: [tex]\dfrac{\hat {k_a} - \hat {k_b}}{\hat {k_a} }= \dfrac{E_a -E_a + \dfrac{\sigma}{2 \varepsilon_o \Big[1 - \dfrac{2.0 \ R}{\sqrt{(2.0 \ R)^2 + (\dfrac{R}{2})^2}} \Big] } } { \dfrac{\sigma}{2 \varepsilon_o \Big [ 1 - \dfrac{2.0 \ R}{\sqrt{ (2.0 \ R)^2 + (R)^2}} \Big] }}[/tex]
[tex]\dfrac{\hat {k_a} - \hat {k_b}}{\hat {k_a} }= \dfrac{1 - \dfrac{2.0}{\sqrt{(2.0)^2 + \dfrac{1}{4}}} }{1 - \dfrac{2.0 }{\sqrt{(2.0)^2 + 1}}}[/tex]
[tex]= 0.2828 \\ \\ \mathbf{\simeq 29\%}[/tex]