Describe lengths of three segments that could not be used to form a triangle. Segments with lengths of 5 in., 5 in., and ______ in. Cannot form a triangle.

Respuesta :

Answer:

[tex]c = 11[/tex]

Step-by-step explanation:

Given

Let the three sides be a, b and c

Such that:

[tex]a = b= 5[/tex]

Required

Find c such that a, b and c do not form a triangle

To do this, we make use of the following triangle inequality theorem

[tex]a + b > c[/tex]

[tex]a + c > b[/tex]

[tex]b + c > a[/tex]

To get a valid triangle, the above inequalities must be true.

To get an invalid triangle, at least one must not be true.

Substitute: [tex]a = b= 5[/tex]

[tex]5 + 5 > c[/tex] [tex]===>[/tex] [tex]10 > c[/tex]

[tex]5 + c > 5[/tex]  [tex]===>[/tex] [tex]c > 5 - 5[/tex] [tex]===>[/tex] [tex]c > 0[/tex]

[tex]5 + c > 5[/tex]  [tex]===>[/tex] [tex]c > 5 - 5[/tex] [tex]===>[/tex] [tex]c > 0[/tex]

The results of the inequality is: [tex]10 > c[/tex] and [tex]c > 0[/tex]

Rewrite as: [tex]c > 0[/tex] and [tex]c < 10[/tex]

[tex]0 < c < 10[/tex]

This means that, the values of c that make a valid triangle are 1 to 9 (inclusive)

Any value outside this range, cannot form a triangle

So, we can say:

[tex]c = 11[/tex], since no options are given