Answer:
Step-by-step explanation:
From the given information:
(i)
The domain includes all runners in a race.
x is "R" y if x beats y
- clearly, x "R" x implies no meaning and sense ⇒ irreflexive
- If x "R" y ⇒ y does not beat x. Thus; asymmetric
- If x "R' y and y "R" Z ⇒ Transitive.
Now, in a race; either x beats y or y beats x
So, x"R"y or y "R" x, but here at least two runners tied.
Thus, the relation is not in total order as x"R"y or y"R"x may not happen.
(j)
S = {a,b,c,d}
The domain = Power set of S
x"R"y if |X| ≤ |Y|
- clearly |X| ≤ |X| ⇒ reflexive
- [tex]If \ |X| \le |Y| \ and \ |Y| \le |X|[/tex] ⇒ |X|=|Y| ⇒ Antisymmetric
- [tex]If |X| \ \le \ |Y| \ and \ |Y| \ \le \ |Z|[/tex] ⇒ |X| ≤ |Z| ⇒ Transitive
Thus, the relation is a partial order.
(k)
S = {a,b,c,d}
The domain = Power set of S
x"R"y if |X| ≤ |Y|
- clearly |X| < |X| ⇒ Irreflexive
- [tex]\text{If } |X| < |Y| \ and \ |Y| < |X|} \implies Antisymmetric[/tex]
- [tex]|X| < |Y| \ and \ |Y| < |Z| \implies |X| < |Z|[/tex] ⇒ Transitive
- Thus, the relation is of strict order but not of the total order.