Answer:
Following are the solution to these question:
Explanation:
Calculating the mean:
[tex]\bar{x}=\frac{175+104+164+193+131+189+155+133+151+176}{10}\\\\[/tex]
[tex]=\frac{1571}{10}\\\\=157.1[/tex]
Calculating the standardn:
[tex]\sigma=\sqrt{\frac{\Sigma(x_i-\bar{x})^2}{n-1}}\\\\[/tex]
Please find the correct equation in the attached file.
[tex]=28.195[/tex]
For point a:
[tex]=3s+yblank \\\\=3 \times 28.195+50\\\\=84.585+50\\\\=134.585\\[/tex]
For point b:
[tex]=3 \ \frac{s}{m}\\\\ = \frac{(3 \times 28.195)}{1.75 \times 10^9 \ M^{-1}}\\\\= 4.833 \times 10^{-8} \ M[/tex]
For point c:
[tex]= 10 \frac{s}{m} \\\\= \frac{(10 \times 28.195)}{1.75 x 10^9 \ M^{-1}}\\\\ = 1.611 \times 10^{-7}\ M[/tex]
It is calculated by using the slope value that is [tex]1.75 \times 10^9 M^{-1}[/tex]. The slope value [tex]1.75 \times 10^9 M^{-1}[/tex]is ambiguous.