Low concentrations of EDTA near the detection limit gave the following dimensionless instrument readings: 175, 104, 164, 193, 131, 189, 155, 133, 151, and 176. Ten unknowns have a mean reading of 60.0. The slope of the calibration curve is 1.75×109M−1.
a) Estimate the signal detection limit for EDTA.
b) What is the concentration detection limit?
c) What is the lower limit of quantitation?

Respuesta :

Answer:

Following are the solution to these question:

Explanation:

Calculating the mean:

[tex]\bar{x}=\frac{175+104+164+193+131+189+155+133+151+176}{10}\\\\[/tex]

  [tex]=\frac{1571}{10}\\\\=157.1[/tex]

Calculating the standardn:

[tex]\sigma=\sqrt{\frac{\Sigma(x_i-\bar{x})^2}{n-1}}\\\\[/tex]

Please find the correct equation in the attached file.

[tex]=28.195[/tex]

For point a:

[tex]=3s+yblank \\\\=3 \times 28.195+50\\\\=84.585+50\\\\=134.585\\[/tex]

For point b:

[tex]=3 \ \frac{s}{m}\\\\ = \frac{(3 \times 28.195)}{1.75 \times 10^9 \ M^{-1}}\\\\= 4.833 \times 10^{-8} \ M[/tex]

For point c:

[tex]= 10 \frac{s}{m} \\\\= \frac{(10 \times 28.195)}{1.75 x 10^9 \ M^{-1}}\\\\ = 1.611 \times 10^{-7}\ M[/tex]

It is calculated by using the slope value that is [tex]1.75 \times 10^9 M^{-1}[/tex]. The slope value [tex]1.75 \times 10^9 M^{-1}[/tex]is ambiguous.

Ver imagen codiepienagoya