Answer:
[tex]\bold{m_1=-\dfrac38}[/tex]
[tex]\bold{m_2=\dfrac12}[/tex]
[tex]\bold{m_3=-1\dfrac12}[/tex]
Step-by-step explanation:
The slope of the line passing through two given points: [tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
(0, 5) ⇒ x₁ = 0, y₁ = 5
(8, 2) ⇒ x₂ = 8, y₂ = 2
So, the slope:
[tex]m_1=\dfrac{2-5}{8-0}=\dfrac{-3}{8}=-\dfrac38[/tex]
(2, -1) ⇒ x₁ = 2, y₁ = -1
(6, 1) ⇒ x₂ = 6, y₂ = 1
The slope:
[tex]m_2=\dfrac{1-(-1)}{6-2}=\dfrac{2}{4}=\dfrac12[/tex]
(-3, -2) ⇒ x₁ = -3, y₁ = -2
(-1, -5) ⇒ x₂ = -1, y₂ = -5
The slope:
[tex]m_3=\dfrac{-5-(-2)}{-1-(-3)}=\dfrac{-3}{2}=-\dfrac32=-1\frac12[/tex]