Given: tangent A = negative StartRoot 15 EndRoot What is the value of Tangent (A minus StartFraction pi over 4 EndFraction)? StartFraction StartRoot 15 EndRoot + 1 Over 1 minus StartRoot 15 EndRoot EndFraction StartFraction negative StartRoot 15 EndRoot + 1 Over 1 + StartRoot 15 EndRoot EndFraction StartFraction StartRoot 15 EndRoot + 1 Over 1 + StartRoot 15 EndRoot EndFraction StartFraction negative StartRoot 15 EndRoot minus 1 Over 1 minus StartRoot 15 EndRoot EndFraction

Respuesta :

Answer:

[tex]\tan(A - \frac{\pi}{4}) = \frac{-\sqrt{15}- 1}{1 -\sqrt{15}}[/tex]

Step-by-step explanation:

Given

[tex]\tan A =-\sqrt{15[/tex]

Required

Find [tex]\tan(A - \frac{\pi}{4})[/tex]

In trigonometry:

[tex]\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}[/tex]

This gives:

[tex]\tan(A - \frac{\pi}{4}) = \frac{\tan A - \tan \frac{\pi}{4}}{1 + \tan A \tan \frac{\pi}{4}}[/tex]

[tex]tan \frac{\pi}{4} = 1[/tex]

So:

[tex]\tan(A - \frac{\pi}{4}) = \frac{\tan A - 1}{1 + \tan A * 1}[/tex]

[tex]\tan(A - \frac{\pi}{4}) = \frac{\tan A - 1}{1 + \tan A}[/tex]

This gives:

[tex]\tan(A - \frac{\pi}{4}) = \frac{-\sqrt{15}- 1}{1 -\sqrt{15}}[/tex]

Answer:

StartFraction StartRoot 15 EndRoot + 1 Over 1 minus StartRoot 15 EndRoot EndFraction

Step-by-step explanation:

EndRoot EndFraction StartFraction negative StartRoot 15 EndRoot + 1 Over 1 + StartRoot 15 EndRoot EndFraction