Respuesta :

Given:

A line passes through the points (9,9) and [tex](x_2,-1)[/tex].

The slope of the line is [tex]\dfrac{5}{6}[/tex].

To find:

The value of [tex]x_2][/tex].

Solution:

Slope formula:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

The line passes through the points (9,9) and [tex](x_2,-1)[/tex]. So, the slope of the line is:

[tex]m=\dfrac{-1-9}{x_2-9}[/tex]

[tex]m=\dfrac{-10}{x_2-9}[/tex]

It is given that the slope of the line is [tex]\dfrac{5}{6}[/tex].

[tex]\dfrac{5}{6}=\dfrac{-10}{x_2-9}[/tex]

[tex]5(x_2-9)=-10(6)[/tex]

[tex]5x_2-45=-60[/tex]

[tex]5x_2=-60+45[/tex]

[tex]5x_2=-15[/tex]

Divide both sides by 5.

[tex]x_2=-\dfrac{15}{5}[/tex]

[tex]x_2=-3[/tex]

Therefore, the value of [tex]x_2[/tex] is [tex]-3[/tex].