Answer:
The formula is dimensionally correct.
Explanation:
Given
[tex]s = ut + \frac{1}{2}at^2[/tex]
Required
Prove its correctness
Write out the dimension of each:
[tex]s = M^0LT^0[/tex] --- displacement
[tex]ut = M^0LT^{-1} * T[/tex] --- velocity * time
[tex]\frac{1}{2}at^2 = M^0LT^{-2} * T^2[/tex] --- acceleration * square of time
The expression becomes:
[tex]s = ut + \frac{1}{2}at^2[/tex]
[tex]M^0LT^0 = M^0LT^{-1} * T + M^0LT^{-2} * T^2[/tex]
Apply law of indices
[tex]M^0LT^0 = M^0LT^{-1+1} + M^0LT^{-2+2}[/tex]
[tex]M^0LT^0 = M^0LT^{0} + M^0LT^{0}[/tex]
[tex]M^0LT^0 = M^0LT^{0}[/tex]
Both sides of the equation are equal