Answer:
Infinitely many solutions.
Step-by-step explanation:
Given
[tex]y = -\frac{10}{7}x + \frac{2}{9}[/tex]
[tex]y = -\frac{10}{7}x + \frac{2}{9}[/tex]
Required
Number of solutions
Substitute [tex]y = -\frac{10}{7}x + \frac{2}{9}[/tex] in the second equation
[tex]-\frac{10}{7}x + \frac{2}{9} = -\frac{10}{7}x + \frac{2}{9}[/tex]
Add [tex]-\frac{10}{7}x[/tex] to both sides
[tex]\frac{10}{7}x -\frac{10}{7}x + \frac{2}{9} = \frac{10}{7}x -\frac{10}{7}x + \frac{2}{9}[/tex]
[tex]\frac{2}{9} = \frac{2}{9}[/tex]
The above solution implies that, the equations have infinitely many solutions.