Answer:
The boiling point temperature of this substance when its pressure is 60 psia is 480.275 R
Explanation:
Given the data in the question;
Using the Clapeyron equation
[tex](\frac{dP}{dT} )_{sat } = \frac{h_{fg}}{Tv_{fg}}[/tex]
[tex](\frac{dP}{dT} )_{sat } = \frac{\frac{H_{fg}}{m} }{T\frac{V_{fg}}{m} }[/tex]
where [tex]h_{fg[/tex] is the change in enthalpy of saturated vapor to saturated liquid ( 250 Btu
T is the temperature ( 15 + 460 )R
m is the mass of water ( 0.5 Ibm )
[tex]V_{fg[/tex] is specific volume ( 1.5 ft³ )
we substitute
[tex](\frac{dP}{dT} )_{sat } =( \frac{250Btu\frac{778Ibf-ft}{Btu} }{0.5})[/tex] / [tex]( (15+460)\frac{1.5}{0.5})[/tex]
[tex](\frac{dP}{dT} )_{sat } =[/tex] 272.98 Ibf-ft²/R
Now,
[tex](\frac{dP}{dT} )_{sat } =[/tex] [tex](\frac{P_2 - P_1}{T_2 - T_1})_{sat[/tex]
where P₁ is the initial pressure ( 50 psia )
P₂ is the final pressure ( 60 psia )
T₁ is the initial temperature ( 15 + 460 )R
T₂ is the final temperature = ?
we substitute;
[tex]T_2[/tex] [tex]= ( 15 + 460 ) + \frac{(60-50)psia(\frac{144in^2}{ft^2}) }{272.98}[/tex]
[tex]T_2 = 475 + 5.2751\\[/tex]
[tex]T_2 =[/tex] 480.275 R
Therefore, boiling point temperature of this substance when its pressure is 60 psia is 480.275 R