g Ammonia has been studied as an alternative "clean" fuel for internal combustion engines, since its reaction with oxygen produces only nitrogen and water vapor, and in the liquid form it is easily transported. An industrial chemist studying this reaction fills a tank with of ammonia gas and of oxygen gas, and when the mixture has come to equilibrium measures the amount of water vapor to be . Calculate the concentration equilibrium constant for the combustion of ammonia at the final temperature of the mixture. Round your answer to significant digits.

Respuesta :

[tex]\text{Ammonia has been studied as an alternative "clean" fuel for internal combustion}[/tex]

[tex]\text{engines, since its reaction with oxygen produces only nitrogen and water vapor,}[/tex]

[tex]\text{and in the liquid form it is easily transported. An industrial chemist studying this}[/tex]

[tex]\text{reaction fills a} \ \mathbf{100 \ L }\ \text{tank with} \ \mathbf{8.6 \ mol} \ \text{of ammonia gas and} \ \mathbf{28 \ mol} \ \ \text{of oxygen gas, }[/tex]

[tex]\text{to be} \ \mathbf{2.6\ mol} \ .\ \text{Calculate the concentration equilibrium constant for the combustion of}[/tex]

[tex]\text{ammonia at the final temperature of the mixture. Round your answer to 2 significant digits.}[/tex]

Answer:

Explanation:

From the correct question above:

The reaction can be represented as:

[tex]\mathbf{4 NH_3_{(g)}+ 3O_{2(g)} \iff 2N_{2(g)}+ 6H_2O_{(g)} }[/tex]

From the above reaction; the ICE table can be represented as:

                    [tex]\mathbf{4 NH_3_{(g)}+ 3O_{2(g)} \iff 2N_{2(g)}+ 6H_2O_{(g)} }[/tex]

I (mol/L)     0.086            0.28                 0              0

C                   -4x                -3x               +2x           +6x

E                 0.086 - 4x     0.28 - 3x      +2x             +6x

At equilibrium;

The water vapor = [tex]\dfrac{2.6 \ mol}{100 \ L} = 6x[/tex]

[tex]x = \dfrac{2.6}{100} \times \dfrac{1}{6}[/tex]

[tex]x = 0.00433[/tex]

[tex]\text{equilibrium constant} ({k_c}) = \dfrac{ [N_2]^2 [H_2O]^6 }{ [[NH_3]^4] [O_2]^3 }[/tex]

[tex]\implies \dfrac{(2x)^2 (6x)^6}{(0.086-4x)^4\times (0.28-3x)^3} \\ \\[/tex]

Replacing the value of x, we have:

[tex]K_c = \dfrac{4 \times 46,656 \times x^8}{(0.086-4x)^4\times (0.28 -3x)^3} \\ \\ K_c = \dfrac{4 \times 46656 \times (0.00433)^8}{(0.06868)^4(0.26701)^3} \\ \\ K_c = \mathbf{5.4446 \times 10^{-8}}[/tex]

[tex]K_c = \mathbf{5.5 \times 10^{-8} \ to \ 2 \ significant \ figures}[/tex]