Answer:
[tex]3.52\times 10^{25}\ \text{J}[/tex]
Explanation:
G = Gravitational constant = [tex]6.674\times 10^{-11}\ \text{Nm}^2/\text{kg}^2[/tex]
M = Mass of Sun = [tex]1.989\times 10^{30}\ \text{kg}[/tex]
m = Mass of Earth = [tex]5.972\times 10^{24}\ \text{kg}[/tex]
[tex]r_i[/tex] = Initial radius of orbit = [tex]1.5\times 10^{11}\ \text{m}[/tex]
[tex]r_f[/tex] = Final radius of orbit = [tex]((1.5\times 10^{11})+2\times 10^3)\ \text{m}[/tex]
Energy required is given by
[tex]E=\dfrac{1}{2}\Delta U\\\Rightarrow E=\dfrac{GMm}{2}(\dfrac{1}{r_i}-\dfrac{1}{r_f})\\\Rightarrow E=\dfrac{6.674\times 10^{-11}\times 1.989\times 10^{30}\times 5.972\times 10^{24}}{2}(\dfrac{1}{1.5\times 10^{11}}-\dfrac{1}{(1.5\times 10^{11})+2\times 10^3})\\\Rightarrow E=3.52\times 10^{25}\ \text{J}[/tex]
The energy required would be [tex]3.52\times 10^{25}\ \text{J}[/tex].