Respuesta :
Answer:
[tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[/tex]
General Formulas and Concepts:
Symbols
- e (Euler's number) ≈ 2.71828
Algebra I
- Exponential Rule [Multiplying]: [tex]\displaystyle b^m \cdot b^n = b^{m + n}[/tex]
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
- U-Solve
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integrand] Rewrite [Exponential Rule - Multiplying]: [tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \int\limits^1_0 {x^5e^{x^3}e} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{x^3}} \, dx[/tex]
Step 3: Integrate Pt. 2
Identify variables for u-solve.
- Set u: [tex]\displaystyle u = x^3[/tex]
- [u] Differentiate [Basic Power Rule]: [tex]\displaystyle du = 3x^2 \ dx[/tex]
- [u] Rewrite: [tex]\displaystyle x = \sqrt[3]{u}[/tex]
- [du] Rewrite: [tex]\displaystyle dx = \frac{1}{3x^2} \ du[/tex]
Step 4: Integrate Pt. 3
- [Integral] U-Solve: [tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du[/tex]
- [Integral] Simplify: [tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^3e^u} \, du[/tex]
- [Integrand] U-Solve: [tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {ue^u} \, du[/tex]
Step 5: integrate Pt. 4
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = u[/tex]
- [u] Differentiate [Basic Power Rule]: [tex]\displaystyle du = du[/tex]
- Set dv: [tex]\displaystyle dv = e^u \ du[/tex]
- [dv] Exponential Integration: [tex]\displaystyle v = e^u[/tex]
Step 6: Integrate Pt. 5
- [Integral] Integration by Parts: [tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg][/tex]
- [Integral] Exponential Integration: [tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg][/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ][/tex]
- Simplify: [tex]\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e