Respuesta :
Answer:
[tex]\sin Y= \frac{XZ}{XY}[/tex]
[tex]\cos Y= \frac{YZ}{XY}[/tex]
[tex]\tan Y= \frac{XZ}{YZ}[/tex]
Step-by-step explanation:
Given
See attachment for triangle
Required
Find [tex]\sin, \cos[/tex] and [tex]\tan[/tex] of angle Y
For angle Y:
[tex]Opposite = XZ[/tex]
[tex]Adjacent = YZ[/tex]
[tex]Hypotenuse = XY[/tex]
The [tex]\sin[/tex] of an angle is calculated as:
[tex]\sin\theta = \frac{Opposite}{Hypotenuse}[/tex]
So:
[tex]\sin Y= \frac{XZ}{XY}[/tex]
The [tex]\cos[/tex] of an angle is calculated as:
[tex]\cos\theta = \frac{Adjacent}{Hypotenuse}[/tex]
So:
[tex]\cos Y= \frac{YZ}{XY}[/tex]
The [tex]\tan[/tex] of an angle is calculated as:
[tex]\tan\theta = \frac{Opposite}{Adjacent}[/tex]
So:
[tex]\tan Y= \frac{XZ}{YZ}[/tex]