Answer:
The coordinates of point A are [tex]A(x,y) = (4,6)[/tex].
Step-by-step explanation:
The location of point A is defined by the vectorial sum of absolute coordinates of point P and coordinates of point A relative to coordinates of point P, that is:
[tex]A(x,y) = P(x,y) + \vec v_{PA}[/tex] (1)
[tex]P(x,y)[/tex] - Absolute coordinates of point P.
[tex]A(x,y)[/tex] - Absolute coordinates of point A.
[tex]\vec v_{PA}[/tex] - Vector to point A relative to point P.
If we know that [tex]P(x,y) =(6,4)[/tex] and [tex]\vec v_{PA} = (-2, 2 )[/tex], then the absolute coordinates of point A are:
[tex]A(x,y) = (6,4) +(-2,2)[/tex]
[tex]A(x,y) = (4,6)[/tex]
The coordinates of point A are [tex]A(x,y) = (4,6)[/tex].