the arithmetic sequence ai is defined by the formula: a1= 2 ai= ai - 1 -3 find the sum of the first 335 terms in the sequence

Respuesta :

Given:

In an arithmetic sequence,

[tex]a_1=2[/tex]

[tex]a_i=a_{i-1}-3[/tex]

To find:

The sum of the first 335 terms in the given sequence.

Solution:

The recursive formula of an arithmetic sequence is:

[tex]a_i=a_{i-1}+d[/tex]         ...(i)

Where, d is the common difference.

We have,

[tex]a_i=a_{i-1}-3[/tex]          ...(ii)

On comparing (i) and (ii), we get

[tex]d=-3[/tex]

The sum of first i terms of an arithmetic sequence is:

[tex]S_i=\dfrac{i}{2}[2a+(i-1)d][/tex]

Putting [tex]i=335,a=2,d=-3[/tex], we get

[tex]S_{335}=\dfrac{335}{2}[2(2)+(335-1)(-3)][/tex]

[tex]S_{335}=\dfrac{335}{2}[4+(334)(-3)][/tex]

[tex]S_{335}=\dfrac{335}{2}[4-1002][/tex]

[tex]S_{335}=\dfrac{335}{2}(-998)[/tex]

On further simplification, we get

[tex]S_{335}=335\times (-499)[/tex]

[tex]S_{335}=-167165[/tex]

Therefore, the sum of the first 335 terms in the given sequence is -167165.