Respuesta :

Answer:

Step-by-step explanation:

The only way in which you can truly simplify this is to factor the quantity within parentheses.  Use the quadratic formula for this purpose:

y^2 - 2y + 4 has coefficients {1, -2, 4}.  The discriminant is b^2 - 4ac, which here is (-2)^2 - 4(1)(4), or 4 - 16, or -12.  Since the discriminant is negative, we know that the roots of this quadratic are complex, different:

       -b ± i√(discriminant)

y = ---------------------------------

                    2a

                -(-2) ±i√12          2 ±i2√3)

Then y = ------------------- = ---------------- = 1 ±i√3

                        2                       2

and we end up with these three factors:  x, x - 1 +i√3, x - 1 -i√3

So the original expression becomes -3·y·(y-1i√3)(y - 1 -i√3)

ACCESS MORE
EDU ACCESS