Given cot A= 11/60 and that angle A is in Quadrant I, find the exact value of cos cos A in simplest radical form using a rational denominator.

Respuesta :

Answer: Below

Step-by-step explanation:cotA=11/60

tan=opposite/adjacent

cot=1/tan

cot=adjacent/opposite

cotA=11/60

adjacent=11

opposite=60

using the Pythagorean Theorem, the hypotenuse=61

csc=1/sin

cscA=1/sinA

sin=opposite/hypotenuse

sinA=60/61

csc=1/sin

cscA=61/60

The value of Cos A is [tex]\frac{11}{61}[/tex].

What is cosine of an angle?

The cosine of an angle is defined as the sine of the complementary angle. The complementary angle equals the given angle subtracted from a right angle, 90°. For instance, if the angle is 30°, then its complement is 60°.

According to the given problem,

Given, cot A = [tex]\frac{11}{60}[/tex],  and angle A is in first quadrant then, all the function's value will be positive in nature.

Now, cot A = [tex]\frac{Base}{Perpendicular}[/tex]

cot A =  [tex]\frac{11}{60}[/tex]

Base = 11

Perpendicular = 60  

Using the Pythagorean Theorem

Hypotenuse² =  Perpendicular² +Base²

⇒ Hypotenuse² = 11² + 60²

⇒ hypotenuse = 61

Then, Cos A = [tex]\frac{Base}{Hypotenuse}[/tex]

Cos A = [tex]\frac{11}{61}[/tex]

Hence, we can conclude that Cos A is [tex]\frac{11}{61}[/tex].

Learn more about cosine of an angle here:

https://brainly.com/question/3827723

#SPJ2

ACCESS MORE
EDU ACCESS
Universidad de Mexico