Answer:
113.80 mL
Explanation:
Given that:
Volume [tex]V_1 = 140 mL[/tex]
Temperature [tex]T_1 = 35.0^0C[/tex]
[tex]= (273 + 35) = 308 \ K[/tex]
Pressure [tex]P_1 = 697 mmHg[/tex]
At standard temperature and pressure;
Temperature [tex]T_2 = 273 K[/tex]
Pressure[tex]P_2[/tex] = 760 mmHg
Using the formula for a combined gas law:
[tex]\dfrac{P_1V_1}{T_1} = \dfrac{P_2V_2}{T_2}[/tex]
[tex]V_2 = \dfrac{P_1V_1T_2}{T_1P_2}[/tex]
[tex]V_2 = \dfrac{697 \ mmHg \times 140 \ mL \times 273 \ K }{308 \ K \times 760 \ mmHg}[/tex]
[tex]\mathbf{V_2 = 113.80 \ mL}[/tex]