Answer:
[tex](x+10)^2 + (y+3)^2 = 85[/tex]
Step-by-step explanation:
Equation of a circle:
The standard equation of a circle with center [tex](x_0,y_0)[/tex] is given by:
[tex](x - x_0)^2 + (y - y_0)^2 = r^2[/tex]
In which r is the radius.
Center (– 10, –3)
This means that [tex]x_0 = -10, y_0 = -3[/tex]. So
[tex](x - x_0)^2 + (y - y_0)^2 = r^2[/tex]
[tex](x - (-10))^2 + (y - (-3))^2 = r^2[/tex]
[tex](x+10)^2 + (y+3)^2 = r^2[/tex]
Passes through the point (-3,3).
This means that we use [tex]x = -3, y = 3[/tex] to find the radius squared. So
[tex](x+10)^2 + (y+3)^2 = r^2[/tex]
[tex](-3+10)^2 + (3+3)^2 = r^2[/tex]
[tex]r^2 = 49 + 36[/tex]
[tex]r^2 = 85[/tex]
The equation of the circle is:
[tex](x+10)^2 + (y+3)^2 = r^2[/tex]
[tex](x+10)^2 + (y+3)^2 = 85[/tex]