Answer:
[tex](x + 12)^2 + (y + 7)^2 = 277[/tex]
Step-by-step explanation:
Equation of a circle:
The equation of a circle with center [tex](x_0,y_0)[/tex] is given by:
[tex](x - x_0)^2 + (y - y_0)^2 = r^2[/tex]
In which r is the radius.
Center (-12, – 7)
This means that [tex]x_0 = -12, y_0 = -7[/tex]. So
[tex](x - x_0)^2 + (y - y_0)^2 = r^2[/tex]
[tex](x - (-12))^2 + (y - (-7))^2 = r^2[/tex]
[tex](x + 12)^2 + (y + 7)^2 = r^2[/tex]
Passes through the point (-3,7).
This means that we use [tex]x = -3, y = 7[/tex] to find the radius squared. So
[tex](x + 12)^2 + (y + 7)^2 = r^2[/tex]
[tex](-3 + 12)^2 + (7 + 7)^2 = r^2[/tex]
[tex]81 + 196 = r^2[/tex]
[tex]r^2 = 277[/tex]
The equation of the circle is:
[tex](x + 12)^2 + (y + 7)^2 = r^2[/tex]
[tex](x + 12)^2 + (y + 7)^2 = 277[/tex]