Respuesta :

Space

Answer:

[tex]\displaystyle d = 8\sqrt{2}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Point (-4, -4)

Point (4, 4)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:                                                         [tex]\displaystyle d = \sqrt{(4+4)^2+(4+4)^2}[/tex]
  2. [Distance] [√Radical] (Parenthesis) Add:                                                         [tex]\displaystyle d = \sqrt{(8)^2+(8)^2}[/tex]
  3. [Distance] [√Radical] Evaluate exponents:                                                     [tex]\displaystyle d = \sqrt{64+64}[/tex]
  4. [Distance] [√Radical] Add:                                                                               [tex]\displaystyle d = \sqrt{128}[/tex]
  5. [Distance] [√Radical] Simplify:                                                                        [tex]\displaystyle d = 8\sqrt{2}[/tex]
RELAXING NOICE
Relax