Answer:
[tex]\displaystyle d = 8\sqrt{2}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point (-4, -4)
Point (4, 4)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(4+4)^2+(4+4)^2}[/tex]
- [Distance] [√Radical] (Parenthesis) Add: [tex]\displaystyle d = \sqrt{(8)^2+(8)^2}[/tex]
- [Distance] [√Radical] Evaluate exponents: [tex]\displaystyle d = \sqrt{64+64}[/tex]
- [Distance] [√Radical] Add: [tex]\displaystyle d = \sqrt{128}[/tex]
- [Distance] [√Radical] Simplify: [tex]\displaystyle d = 8\sqrt{2}[/tex]