Respuesta :

Answer:

A) = 4.

B) = 25.

C) = 4.

Step-by-step explanation:

We are given that a and b are positive integers and that:

[tex]a-b=2[/tex]

And we want to evaluate the following expressions.

Expression A)

We have:

[tex]\displaystyle \frac{2^a}{2^b}[/tex]

This is equivalent to:

[tex]=2^a\div 2^b[/tex]

Therefore:

[tex]=2^{a-b}[/tex]

Substitute and evaluate:

[tex]=2^{(2)}=4[/tex]

Expression B)

We have:

[tex]\displaystyle \frac{5^a}{5^b}[/tex]

This is equivalent to:

[tex]=5^{a-b}[/tex]

Again, substitute and evaluate:

[tex]=5^{(2)}=25[/tex]

Expression C)

Lastly, we have:

[tex]\displaystyle \frac{4^{0.5a}}{2^b}[/tex]

Note that 4 = 2². Hence:

[tex]=\displaystyle \frac{(2)^{2(0.5a)}}{2^b}[/tex]

Simplify:

[tex]=\displaystyle \frac{2^a}{2^b}[/tex]

Using the previous result:

[tex]=4[/tex]

Answer:

c=4

Step-by-step explanation:

becus rsm said it was correct

ACCESS MORE
EDU ACCESS
Universidad de Mexico